On the mean square of the divisor function in short intervals
نویسندگان
چکیده
We provide upper bounds for the mean square integral
منابع مشابه
On the Divisor Function and the Riemann Zeta-function in Short Intervals
We obtain, for T ε ≤ U = U(T ) ≤ T 1/2−ε, asymptotic formulas for Z 2T T (E(t+ U)− E(t)) dt, Z 2T T (∆(t+ U)−∆(t)) dt, where ∆(x) is the error term in the classical divisor problem, and E(T ) is the error term in the mean square formula for |ζ( 1 2 + it)|. Upper bounds of the form Oε(T 1+εU2) for the above integrals with biquadrates instead of square are shown to hold for T 3/8 ≤ U = U(T ) ≪ T ...
متن کاملOn the Symmetry of Divisor Sums Functions in Almost All Short Intervals
We study the symmetry of divisor sums functions σ−s(n) def = ∑ d|n d −s (for σ = Re(s) > 0) in almost all short intervals; by elementary methods (based on the Large Sieve) we give an exact asymptotic estimate for the mean-square (over N < x ≤ 2N) of their “symmetry sum” ∑ |n−x|≤h sgn(n− x)σ−s(n) (here sgn(0) = 0 and sgn(t) def = t/|t|, for t 6= 0).
متن کاملJournal de Théorie des Nombres
On the mean square of the divisor function in short intervals par Aleksandar IVI´C Résumé. On donne des estimations pour la moyenne quadratique de 2X X (∆ k (x + h) − ∆ k (x)) 2 dx, o` u h = h(X) ≫ 1, h = o(x) quand X → ∞ et h se trouve dans un intervalle convenable. Pour k 2 un entier fixé, ∆ k (x) et le terme d'erreur pour la fonction sommatoire de la fonction des diviseurs d k (n), generée p...
متن کاملOn the Integral of the Error Term in the Dirichlet Divisor Problem
A b s t r a c t. Several results are obtained concerning the function ∆ k (x), which represents the error term in the general Dirichlet divisor problem. These include the estimates for the integral of this function, as well as for the corresponding mean square integral. The mean square integral of ∆ 2 (x) is investigated in detail.
متن کاملStatistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm
This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009